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Abstract 

The increasing death rate over the past eight years due to stroke has prompted clinicians to look for data-driven 
decision aids. Recently, deep-learning-based prediction models trained with fine-grained electronic health record 
(EHR) data have shown superior promise for health outcome prediction. However, the use of EHR-based deep 
learning models for hemorrhagic stroke outcome prediction has not been extensively explored. This paper proposes 
an ensemble deep learning framework to predict early mortality among ICU patients with hemorrhagic stroke. The 
proposed ensemble model achieved an accuracy of 83%, which was higher than the fusion model and other baseline 
models (logistic regression, decision tree, random forest, and XGBoost). Moreover, we used SHAP values for 
interpretation of the ensemble model to identify important features for the prediction. In addition, this paper follows 
the MINIMAR (MINimum Information for Medical AI Reporting) standard, presenting an important step towards 
building trust among the AI system and clinicians. 
 
Introduction 

Hemorrhagic stroke is one of the leading causes of death and a major cause of disability in the United States according 
to the trend report by the Centers for Disease Control and Prevention (CDC).1 Hemorrhagic stroke occurs due to 
bleeding into the brain which is caused by rapture of the blood vessel. Hemorrhagic stroke is further divided into 
intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). According to a recent survey, 35% of stroke 
patients die within 7 days of the stroke and about 50% of intracerebral hemorrhagic stroke patients died within 30 
days.2 Most hemorrhagic stroke patients are admitted to intensive care units (ICUs) after stroke.3 Early prediction of 
mortality and identification of factors related to the mortality of hemorrhagic stroke patients in the ICU setting can 
potentially reduce mortality rate through targeted interventions. 

Currently, most clinicians use traditional risk scores, as well as simple statistical and machine learning (ML) models 
for mortality prediction.4 Several risk scores such as Acute Physiology and Chronic Health Evaluation (APACHE II, 
IV), Simplified Acute Physiology Score III (SAPS III) have been evaluated for predicting mortality of stroke patients.8 
Simple statistical and ML algorithms like logistic regression, decision tree, and random forest were also used for 
mortality prediction. Still many clinicians rely on the risk scores due to their simple and understandable structure even 
though these scores consider very limited number of features with suboptimal sensitivity and specificity. 

In recent years, the advent of machine learning (ML) and deep learning (DL) has significantly improved the accuracy 
of predictive analysis in healthcare.5 The increasing use of electronic health record systems (EHRs) in hospitals and 
other clinical settings has made it possible to develop more advanced ML and DL models for mortality predictions.6 
As such, many researchers have used EHR data to build prediction models with ML and DL approaches in the 
healthcare.7 Specifically, deep learning models have been developed for predicting ICU mortality with significant 
accuracy. However, use of AI in healthcare faces significant challenges such as following practice standards, lack of 
interpretation and unexpected low performance.9 Furthermore, we have not well explored how to leverage data of 
different modalities such as snapshot, time series, textual, image, and audio data for mortality prediction by ML and 
DL models. Addressing these challenges can build a bridge of trust among the health informatics researchers, 
clinicians, physicians, and stakeholders. 

While much research has studied use of ML and DL models for prediction of different mortalities, very few studies 
have been conducted to explore ML and DL for stroke mortality prediction. In this study, we extracted a cohort of 
stroke patients from the MIMIC-III database and developed a dataset for experiment of using ML and DL algorithms 
for mortality prediction of stroke patients. Following the MINimum Information for Medical AI Reporting 
(MINIMAR) standard, we developed an ensemble model to predict stroke patient mortalities based on their aggregated 
and hourly measured data. Our ensemble model was able to achieve significantly better performance compared to 
traditional machine learning algorithms. In addition, we used SHAP values for interpretation of our ensemble model 
to identify the important features for prediction. In this context, this study has the following overarching goals: 

128



  

1) Designing interpretable multimodal predictive models for hemorrhagic stroke mortality prediction following the 
standard medical AI reporting guidelines. 

2) Comparing the performance of the designed models with the baseline models. 

3) Providing explanation and interpretation of the models.  

Related Work 

There were some interesting studies which predicted stroke patients’ mortality with simple models. One of those 
studies is Nie’s study where traditional models were used with mean, standard deviation, and maximum, minimum of 
variables for predicting 7 days and 30 days of intracerebral hemorrhage stroke patient mortality.3 Although Nie’s study 
was related to mortality prediction in cerebral hemorrhage stroke patients, the traditional models (nearest neighbors, 
decision tree, neural net, Adaboost, random forest) used in the study were not able to produce more than 70% of 
accuracy. Similarly, Scrutinio’s random forest model achieved highest accuracy of 77% for mortality prediction of 
stroke patients.11 To improve the prediction performance from the previous studies, we identified few studies which 
implemented multimodal algorithm approach for mortality prediction but these studies were not specifically focused 
on hemorrhagic stroke patients’ mortality prediction. Purushothom’s benchmarking models are considered to be one 
of the best models for EHRs data analysis and mortality prediction.10 In Purushothom’s study, multimodal DL 
(MMDL) achieved the highest area under the ROC curve (AUROC) score of 92% in mortality prediction of 1-day, 2-
day, 30-day, and 1-year using MIMIC data. However, Purushothom’s study was about in-hospital mortality prediction 
instead of hemorrhage patient mortality prediction and the selected features in the study were limited. In another study, 
multitask learning with MIMIC time series data was performed for predicting hospital mortality.12 Zhang’s study shed 
light on the use of fusion techniques using CNN and LSTM.13 Both unstructured and structured data were used in 
Zhang’s study. Similarly, Xu’s paper also provided multimodal fusion architecture (MUFASA) for diagnosis using 
EHR data and the performance of the designed model outperformed Transformer based models.14  Similar to our 
techniques, previous studies proposed multimodal fusion and ensemble techniques for mortality prediction but 
struggled to achieve higher performance in terms of accuracy, and provide a proper explanation of the models. 

Method 

Figure 1 provides the overall representation of the workflow of this study, consisting of dataset development, feature 
selection, preprocessing, modeling with ML and DL, and interpretation with SHAP values following the MINIMAR 
standard. In the remainder of the Method section, we will describe the details of each step of this workflow.  

   
 

Figure 1. The workflow of the study 
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MINIMAR 

Adhering to a reporting guideline during the design of AI systems will make the AI more trustworthy to the 
stakeholders. The MINIMAR (MINimum Information for Medical AI Reporting), which consists of 4 components: 
study population and setting, patient demographic characteristics, model architecture, and model evaluation, is a 
popular reporting standard for artificial intelligence in healthcare.22 We followed the guidelines provided by the 
MINIMAR standard in this study. 

Data Source 

We used data extracted from MIMIC-III (Medical 
Information Mart for Intensive Care) database. MIMIC-
III is a clinical database that contains data on patients 
hospitalized to a large hospital’s critical care units.15 
During the data collecting phase of MIMIC-III, two 
critical care information systems were used: Philips 
CareVue Clinical Information System and iMDsoft 
MetaVision ICU. Vital signs, medications, laboratory 
measures, care providers’ observations and notes, fluid 
balance, procedure codes, diagnostic codes, imaging 
reports, hospital length of stay, survival data, and more 
are all included in the MIMIC-III database. MIMIC-III 
provides data on 53,423 unique hospital admissions for 
adult patients (aged 16 and over) admitted to critical care 
units between 2001 and 2012. MIMIC-III database is a 
relational database which contains 26 tables. Among the 
tables, we have included 8 tables (ADMISSIONS, 
CHARTEVENTS, DIAGNOSES_ICD, ICUSTAYS, 
OUTPATIENTS, LABEVENTS, PATIENTS, 
SERVICES) as we are considering vital signs and 
laboratory measures, social determinants, interventions, 
and demographics to predict ICU mortality within 7 days.   

Cohort Definition 

As shown in Figure 2, we extracted unique ICU stays by 
constraining with the ICD-9-CM codes related to hemorrhagic stroke ('430', '431', '436', '4320', '4321', '4329'). This 
cohort consisted of 2,718 ICU stays. Later, another constraint was applied by excluding ICU stays who died within 
24 hours. Applying the constraint, the total number of ICU stays became 2,187. We then removed 98 ICU stay records 
with inconsistent and missing values. The final total number of ICU stays remains 2,089 (mortality rate = 14.0%).  

Outcome Definition 

As illustrated in Figure 3, we define observation window as the first 24 hours and prediction window as the subsequent 
six days. In the observation window, we collected ICU patients’ vital signs and other relevant factors. In the prediction 
window, we captured the mortality information as the outcome. 
 
Feature Selection 

To identify relevant features, we considered different popular risk scores, mortality scores, and organ dysfunction 
scores such as OASIS, APS II, SAPS, SAPS II, APACHE II, APACHE IV, LODS, qSOFA, SOFA, and SIRS.15-17 
We used 73 variables consisting of demographics, lab and chart values, comorbidities, vitals, and other variables. In 
other variable types, we included temperature, glucose, Glasgow Coma Scale (GCS) score for motor (gcsmotor), 
verbal (gcsverbal), and eyes (gcseyes), endotracheal position, urine output, services related to orthopedic medicine 
(service_omed), neurologic medicine (service_nmed), neurologic surgery (surgery_intervention), thoracic surgery 
(service_tsurg), cardiac surgery (service_cmed), vascular surgery (service_vsurg), plastic surgery (service_psurg), 
urinary system (service_gu), general surgery (service_surg), female reproductive systems (service_gyn), and trauma 
(service_traum). The list of variables is given in Table 1. 

Figure 2. The detailed process of data extraction 
using exclusion-inclusion criteria. 
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Furthermore, categorical variables such as gender and race were converted into numerical variables. We categorized 
the variables into two categories: temporal, and aggregated data. Temporal variables consisted of vital signs. 
Aggregated data consisted of all other variables. 

In this research, hourly data for vital signs were included in the observation window. As other relevant features did 
not have hourly values, we employed the statistical approach of taking the minimum, mean, standard deviation, and 
maximum value of other variables as potential features. 

 
 

Figure 3. Visualization of the observation and prediction window 

Table 1. Details of variable types and variables 

Variable Type Variables 
Demographics Age, Gender, Race 
Lab & Chart 
Value 

PO2 (partial pressure of oxygen), partial pressure of carbon dioxide (PCO2), the 
ratio of arterial oxygen partial pressure (PaO2 in mmHg) to fractional inspired 
oxygen (FiO2 expressed as a fraction, not a percentage), measure of the acidity or 
alkalinity, presence of strong acid (metabolic acidosis) or strong base (metabolic 
alkalosis), level of bicarbonate, combination of hemoglobin and carbon monoxide 
formed in the blood, hemoglobin found in the blood in small amounts, aniongap, 
albumin bands, bicarbonate, bilirubin, calcium, creatinine, chloride, hematocrit, 
hemoglobin, lactate, platelet, potassium, Partial thromboplastin time (PTT), 
international normalized ratio from prothrombin time (PT), sodium, blood urea 
nitrogen (bun), white blood cells count (wbc) 

Comorbidities heart failure, hypertension, metastatic cancer, obesity, alcohol abuse, depression, 
paralysis, diabetes, weight loss, drug abuse 

Vitals heart rate, systolic blood pressure,  diastolic blood pressure, mean  arterial 
pressure, respiratory rate, oxygen saturation (SpO2) 

 
Class Imbalance Correction 

Extracted data were imbalanced as the number of survivors was 1797 and the number of non-survivors was only 292. 
Class imbalance is a common and significant problem for predictive modeling using EHR data.20 Sampling is one of 
the solutions for tackling imbalanced classification problem. Imputation techniques vary depending on the type of the 
study. Synthetic minority over-sampling (SMOTE),21 down/under sampling, or up sampling are some of the popular 
sampling techniques for machine learning classification tasks. We used under-sampling technique which randomly 
removes samples from the majority class (negative samples) to balance with the minority class. After under-sampling 
the negative instances, the total number of ICU stays became 757 pertaining to 742 patients. Among them, 450 were 
surviving ICU stays and 307 were non-surviving ICU stays. The mortality rate became 40.6%. 

Data Imputation 

Data quality issue is a major challenge for EHR data. EHR data contains a lot of missing values and inconsistent 
data.18 To address this challenge, different imputation techniques have been used in EHR-based predictive modeling. 
Mean and median imputation are the most popular imputation techniques which can be performed quite easily. In 
addition, there are other imputation techniques such as K-nearest neighbors based (KNN) imputation, MissForest, and 
multiple imputation by chained equations (MICE). MICE imputation technique is proven to generate better 
performance with EHR data.19 Hence, we chose to use MICE imputation in our study. 
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Machine Learning and Deep Learning Algorithms 

We will introduce various machine learning and deep learning algorithms including ensemble, fusion, and baseline 
models used in this study in the subsections below.  

Fusion Model: Fusion is a technique of creating a better knowledge representation by concatenating data from 
multiple modalities aiming to achieve better ML performance than single modality.27 In case of our study, we gathered 
vital signs data as time series data and non-vital sign data as aggregated data for the fusion model.16 In this context, 
our data can be considered a multimodal data. Various fusion architectures (early, late, and joint) can be applied to 
the fusion model.28 Early fusion technique is joining the data at the initial input level before feeding them to the neural 
network. Late fusion is the process where the fusion takes place at the prediction level to generate a final prediction. 
Joint fusion is the process of concatenating learned knowledge representations from multiple models and then feed 
the concatenated knowledge representation to another model as input to generate final prediction. We used joint fusion 
mechanism for our fusion model. In this study, time series data have learned from 2-LSTM layers (128 and 64 neurons 
in each layer, respectively) and aggregated data have learned from 2-fully connected layer (128 and 64 neurons in 
each layer, respectively). Later, the combined output was fed to a fully connected layer to generate the final prediction 
output of mortality. Long short-term memory (LSTM) is a specific kind of recurrent neural network that contain three 
multiplicative units which are the input, output and the forget gates that provide continuous analogues of write, read, 
and reset operations for the cells.26 Figure 4 shows the model architecture of the fusion model. 

Despite proper data preprocessing, optimization of the algorithm is necessary for building an optimal model. We 
experimented with different numbers of neurons, layers, activation function, optimizers, batch size, and epochs in our 
models and achieved the best results with the lowest loss rate, highest and faster learning rate, and highest accuracy. 
We tried different combinations of the hyper parameters and selected the best combination. We tried batch size “16”, 
“32”, and “64” to find the best batch size and chose “32” as the batch size. Similarly, we tried “20”, “50”, and “100” 
epochs for the model, later found “100” epochs to be the best. We also tried different optimizers such as “SGD” and 
“RMSProp”, but found that the most effective optimizer is the Adam optimizer which is an algorithm for first order 
gradient-based optimization of stochastic objective function.29 This optimizer is efficient for handling a large number 
of data and parameters. Adam optimizer is often used for models using EHR data.30 As our data was highly 
imbalanced, we used focal loss error in the fusion model.31 Like object detection, focal loss corrects class imbalance 
during training. For activation functions, 2-LSTM layers and 2 fully connected layers use a piecewise linear function 
(ReLU) which passes the output as positive or zero and the final output layer uses the Sigmoid function so that the 
output always remains between 0 and 1 as this is a classification task.  

 

 
Figure 4. The model architecture of Fusion model. Fusion model uses 2-layer LSTM and 2- dropout (10%) to model 
temporal data. Consequently, 2-fully connected layer and 1- dropout (10%) are used to model aggregated data. 
Then, the output is concatenated and passed through another fully connected layer and the output layer to make 
predictions. Fusion model used total of 345,025 parameters. 
 
Ensemble: The ensemble is a technique of creating a new model by combining two or more models. There are various 
kinds of ensemble methods such as averaging, max voting, stacking, blending, bagging, and boosting.32 Our intention 
in this study is to build the ensemble model using the same models and data from fusion (before the fully connected 
layer). However, we used late fusion in the ensemble model. We used averaging ensemble method consisting of the 
two independent models and providing the average of the prediction of the two models. Binary cross entropy loss was 
used for loss function in both models of ensemble. In the first model (LSTM), total of 119,105 were used and second 

132



  

model (fully connected) used total of 29,057 trainable parameters. Figure 5 shows the high-level overview of the 
ensemble model. 

           
Figure 5. The high-level overview and model architecture of Ensemble average method. Like the Fusion model, 
Ensemble average uses 2-layer LSTM and 2- dropout (10%) to model temporal data and 2-fully connected layer and 
1- dropout (10%) are used to model aggregated data. Then, predictions from both models are averaged to generate 
final output prediction. 
 
Baseline Machine Learning Models. We used decision tree23, random forest25, XGBoost, and logistic regression24 
as the baseline model for this research. In addition, XGBoost uses extreme gradient boosting, which is easy to scale 
and visualize with available libraries. We converted all the features including the vital signs into summary statistics 
(min, max, standard deviation, mean) and used these summary statistics for each variable in the baseline models. We 
compared the fusion model and ensemble model performance with the baseline models for the validity of the model. 

Model Evaluation 

We reported Precision, Recall, F1, Accuracy and AUROC for performance evaluation of the models. Accuracy is  the 
ratio of accurately predicted observations for patient mortality to all observations. Similarly, the ratio of accurately 
predicted positive (mortality) observations to total predicted positive (mortality) observations is known as precision. 
On the other hand, recall is defined as the proportion of accurately predicted positive (mortality) observations to all 
the positive observations in the class. F1 is the harmonious mean of precision and recall. The area under the ROC 
curve (AUROC) estimates the capability of Fusion and Ensemble models to differentiate between survival and non-
survival. We also performed 5–fold cross validation on the baseline ML models to validate the generalizability of 
these models. We evaluated the averages of all the performance metrics for 5–fold cross validation and calculated 
standard deviations for them. However, we did not perform 5-fold cross validation for the fusion and ensemble models 
as they contain data with different modalities. 

Explanation of the Models with SHAP 

We used SHAP values (SHapley Additive exPlanations) for providing transparency and interpretability of the 
ensemble model. SHAP values is the process of assigning value to the features which reflects the relations of the 
features with the output. This explainability method was derived from coalitional game theory to identify an approach 
to disseminate the “pay” to all features properly. “shap.DeepExplainer” package was used for deriving the SHAP 
values which uses the DeepLIFT algorithm (Deep SHAP). In addition, we used “shap.summary_plot” package to 
provide visualization of the important features. 

Results 

Our study has checked almost all the feature components of MINIMAR reporting guideline except internal and 
external model validation. Providing standards to our report will help the medical informatics research community to 
evaluate our models with ease. 
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Baseline Characteristics 

As shown in Table 2, most of the ICU stays in the cohort involved patients above 70 years, and majority race was 
white. Although, the male and female percentage of the cohort were almost equal. 

Table 2.  Demographic characteristics for ICU stays 

 Positive Instances Negative Instances 
Age Number Mean (Standard 

Deviation) 
Number Mean (Standard 

Deviation) 
  0-19 0 0 0 0 
  20-45 21 36.6 (6.29) 62 37.9 (5.63) 
  45-65 87 57.16 (5.59) 169 57.02 (5.12) 
  65-75 67 70.53 (3.32) 90 71.78 (2.68) 
  75 and above 128 (excluding 4 

inconsistent age 
values (age > 300)) 

82.06 (3.1) 124 (excluding 4 
inconsistent age 
values (age > 300)) 

81.5 (3.43) 

Gender Number Percentage Number Percentage 
 Male 158 51.47 244 54.22 
 Female 149 48.53 206 45.78 
Race     
 While 198 64.4 321 71.33 
 Black 18 5.9 38 8.44 
 Hispanic 15 4.9 13 2.9 
 Asian 15 4.9 11 2.44 
 Other Race 61 19.9 67 14.89 

 
Performance Comparison and Analysis 
 
Table 3 provides the performance metrics precision, recall, F1, accuracy, and AUROC for the tested models. The 
ensemble average model has outperformed other models in all evaluations except for AUROC. Logistic regression, 
random forest, and XGBoost had the highest AUROC. We can observe from comparing the results that the multimodal 
technique of combining temporal and aggregated features significantly increases the performance. Figure 6 gives the 
ROC curves of the models. 

Table 3. Ensemble average (avg) and Fusion model performance comparison with the baseline models 

 
Models Precision (STD)  Recall (STD) F1 (STD) Accuracy (STD) AUROC (STD) 
Fusion model 0.79 0.61 0.69 0.78 0.75 
Ensemble (avg) 0.8 0.77 0.79 0.83 0.82 
Logistic  
Regression 0.77 (0.04) 0.71 (0.05) 0.74(0.04) 0.8 (0.03) 0.87 (0.03) 
Decision  
Tree  0.72 (.06) 0.68 (.06) 0.7 (0.04) 0.76 (0.03) 0.80(.05) 

Random Forest  0.76 (0.05) 0.74 (0.06) 0.75 (0.05) 0.8 (0.04) 0.87 (0.03) 
XGBoost  0.75 (0.06) 0.74 (0.05) 0.75 (0.05) 0.8 (0.04) 0.87 (0.03) 
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                                            A                                                                                         B 
 
Figure 6. The ROC curves of Ensemble model and other baseline models. A) Shows ROC curve of Ensemble model. 
B) Shows the ROC curve of baseline models (Logistic Regression, Decision Tree, Random Forest, XGBoost). 
 
Explainability with SHAP 

As there are two models in our ensemble model, we 
are considering aggregated features for 
interpretability because temporal features consist of 
only 7 features. Global and local are two important 
methods of providing interpretability while using 
SHAP values.33 Global interpretability provides the 
collective SHAP values to display the impact of the 
features on mortality prediction. On the contrary, 
local interpretability shows the SHAP values of each 
observation. In case of global interpretation of the 
result in Figure 7, we can find that the most important 
feature for mortality prediction from the aggregated 
features is the maximum value of GCS motor 
response which measures patient’s ability to follow 
the command and move with application of different 
pain stimulus. Likewise, other important variables 
included glucose, blood urea nitrogen, overall GCS 
score, white blood cells count, temperature, GCS eyes 
response, heart failure, services related to surgery 
(general but not classified) and gynecology, race, and 
neurologic (related to brain) surgical interventions.  
 
Discussion 

While the evaluation of patients with hemorrhagic 
stroke is coupled with significant burden of disease, 
admission for intensive care allows clinicians to 
stabilize patients and allows them to start a journey on 
the road towards recovery.34 Without a doubt, clinical 
significance can be found in improved predictive 
models as they can guide decision making when signs, symptoms and data flag poor outcomes. This study showed 
that the ensemble model produces a better accuracy, precision, recall, and F1 score than the fusion model and baseline 
models. This guides to the understanding that vital signs collected with regular time stamps would be necessary for 
reducing the mortality of hemorrhagic stroke patients. This may seem to be common practice in most ICUs, but we 

Figure 7. The summary plot shows the global interpretation of 
the most important features and the magnitude of the impact 
of the features on the Ensemble model. 
 

135



  

find that vital signs and other features of patient status should be handled in separate models for better prediction 
outcomes. Furthermore, other subjective and objective findings like GCS scores, labs like serum glucose, blood urea 
nitrogen, white blood cells count, and presence of other comorbidities like heart failure are all significant to mortality 
outcomes in the ICU.35 Providers caring for patients in this acute and subacute setting should be made aware and have 
access to the best predictors to improve their approach to therapeutic interventions, prioritizing those most impactful 
in leading to morbidity and mortality. Further studies should be sought out to assess if addressing these findings would 
improve patient outcomes.  

Looking at the limitations, racial bias was observed in the dataset, external validation of the model was not performed 
in this study due to lack of external data sources. Future research can address the bias issue by adopting more fair 
models. Moreover, data with different modalities such as neuroimaging and clinical notes can be used for mortality 
prediction in the future. In addition, some features such as Glasgow Coma Scale (GCS) score for motor are subjective 
which may have introduced human variability.  

Conclusions 

In this study, we presented robust multimodal deep learning predictive models combining both temporal and 
aggregated features from EHR data. We generated global interpretation to focus on the imported features extracted 
from the ensemble model. Identifying important features for mortality prediction can play a vital role in taking early 
precautions in clinical settings. In addition, we followed the MINIMAR reporting guidelines in our study. Further 
research can be conducted on this study to overcome the indicated limitations. 

Data and Code Availability 

The datasets used in this study can be found at: https://archive.physionet.org/works/MIMICIIIClinicalDatabase/files/. 
We used the Google Colab notebooks platform to implement our algorithm framework. All the predictive models of 
this study are available from the website at: https://github.com/ForhanBinEmdad/papers 
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